In Utero Exposure to Maternal Diabetes Impairs Vascular Expression of Prostacyclin Receptor in Rat Offspring

نویسندگان

  • Jean-Paul Duong Van Huyen
  • Emilie Vessières
  • Claudine Perret
  • Adrien Troise
  • Sonia Prince
  • Anne-Laure Guihot
  • Pascal Barbry
  • Daniel Henrion
  • Patrick Bruneval
  • Stéphane Laurent
  • Martine Lelièvre-Pégorier
  • Céline Fassot
چکیده

OBJECTIVE To evaluate modifications of arterial structure, gene expression, and function in our model of rats exposed to maternal diabetes. RESEARCH DESIGN AND METHODS Morphometric analyses of elastic vessels structure and determination of thoracic aortic gene expression profile with oligonucleotide chips (Agilent, G4130, 22k) were performed before the onset of established hypertension (3 months). RESULTS Arterial parameters of in situ fixed thoracic aorta were not significantly different between control mother offspring and diabetic mother offspring (DMO). The aortic gene expression profile of DMO is characterized by modifications of several members of the arachidonic acid metabolism including a twofold underexpression of prostacyclin receptor, which could contribute to decreased vasodilatation. This was confirmed by ex vivo experiments on isolated aortic rings. Pharmacological studies on conscious rats showed that systolic blood pressure decline in response to a PGI(2) analog was impaired in DMO rats. CONCLUSIONS These results suggest an abnormal vascular fetal programming of prostacyclin receptor in rats exposed in utero to maternal hyperglycemia that is associated with impaired vasodilatation and may be involved in the pathophysiology of hypertension in this model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exposure to Maternal Diabetes Induces Salt-Sensitive Hypertension and Impairs Renal Function in Adult Rat Offspring

OBJECTIVE Epidemiological and experimental studies have led to the hypothesis of fetal origin of adult diseases, suggesting that some adult diseases might be determined before birth by altered fetal development. We have previously demonstrated in the rat that in utero exposure to maternal diabetes impairs renal development leading to a reduction in nephron number. Little is known on the long-te...

متن کامل

The Impact of Plasmodium Berghei Exposure In-utero on Neurobehavioral Profile in Mice

Introduction: The World Health Organization estimates that about 25 million pregnant mothers are currently at risk for malaria, and that malaria accounts for over 10,000 maternal and 200,000 neonatal deaths per year. The current hypothesis of early life programming supports the premise that many developmental delay and disorders may have their origin In-utero. Therefore, the current study aimed...

متن کامل

Prenatal zinc supplementation ameliorates hippocampal astrocytes activation and inflammatory cytokines expression induced by lipopolysaccharide in a rat model of maternal immune activation

Objective: There is evidence that gestational exposure to lipopolysaccharide (LPS) results in fetal zinc deficiency, and eventually neurodevelopmental abnormalities. In this study, we utilized a rat model of maternal immune activation (MIA) to investigate the possible neuroprotective effect of zinc supplementation throughout pregnancy on hippocampal astrocytes activation as well as inflammatory...

متن کامل

Effects of diethylstilbestrol exposure during gestation on both maternal and offspring behavior

Endocrine disruption during gestation impairs the physical and behavioral development of offspring. However, it is unclear whether endocrine disruption also impairs maternal behavior and in turn further contributes to the developmental and behavioral dysfunction of offspring. We orally administered the synthetic non-steroidal estrogen diethylstilbestrol (DES) to pregnant female C57BL/6J mice fr...

متن کامل

Gestational diabetes leads to down-regulation of CDK4-pRB-E2F1 pathway genes in pancreatic islets of rat offspring

Objective(s): The link between a hyperglycemic intrauterine environment and the development of diabetes later in life has been observed in offspring exposed to gestational diabetes mellitus (GDM), but the underlying mechanisms for this phenomenon are still not clear. Reduced β-cells mass is a determinant in the development of diabetes (type 1 and type 2 diabetes). Some recent studies have provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010